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Bone modeling and remodeling has been the subject of extensive experimental studies. There have been
several mathematical models proposed to explain the observed behavior, as well. A different approach is
taken here in which the bone is treated from a macroscopic view point. In this investigation, a one-
dimensional analytical model is used to shed light on the factors which play the greatest role in modeling
or growth of cortical bone at the periosteal surface. It is presumed that bone growth is promoted when
increased amounts of bone nutrients, such as nitric oxide synthase (NOS) or messenger molecules, such
as prostaglandin E2 (PGE2), seep out to the periosteal surface of cortical bone and are absorbed by oste-
oblasts. The transport of the bone nutrients is assumed to be a strain controlled process. Equations for the
flux of these nutrients are written for a one-dimensional model of a long bone. The obtained partial
differential equation is linearized and solved analytically. Based upon the seepage of nutrients out of
the bone, the effect of loading frequency, number of cycles and strain level is examined for several
experiments that were found in the literature. It is seen that bone nutrient seepage is greatest on the
tensile side of the bone; this location coincides with the greatest amount of bone modeling.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction slender cell processes running in small channels, canaliculi, in
Bone is an adaptive material which is capable of healing when
fractured, as well as altering its shape and structure as a result of
imposed strain [1–8]. The hollow cross-section of long skeletal
bones is ideal for supporting compressive, bending or torsional
loads. The dense exterior of the central part of a long bone is
formed by cortical bone, also known as compact bone. Near the
ends of these bones, areas of cancellous bone serve to transfer
loads from the joint to its stronger cortical part. Cancellous bone
is a more porous type of material formed by a lattice of rods and
plates which are referred to as trabeculae. The modeling and
remodeling processes in skeletal bone can alter either its external
shape or its internal structure.

The cells involved in both processes include bone forming oste-
oblasts, osteocytes, lining cells and osteoclasts which are active in
bone resorption. An osteocyte is formed from an osteoblast at an
actively forming bone surface and then trapped within the bone
matrix, while new osteoblasts are recruited to the active surface
area. Lining cells are osteocytes at the surface that flatten out to
cover an inactive bone surface [9]. The trapped osteocytes are
embedded in the mineralized bone matrix in pores called lacunae.
They are not isolated from each other but remain in contact via
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the bone matrix. The cell processes of the osteocytes are connected
by gap junctions which form a network together with the lining
cells. This network transfers cell signals when loading occurs. Since
the network is adjacent to the bone marrow stroma, as well as the
periosteum, new osteoblasts or osteoclasts can be recruited when
loading conditions demand. There is experimental evidence
in vivo showing that mechanical load can stimulate, directly or
indirectly, responses from osteocytes and bone lining cells [10].

Osteocytes probably do not respond directly to mechanical
strain or deformation, but instead indirectly to the extracellular
flow caused by the loading. The fluid flow along cells or processes
produces drag force and shear stress on the surface of the cell, and
an electric potential called a streaming potential. Each of these sig-
nals may activate bone cells, although cell culture experiments
suggest that cells are more sensitive to fluid forces than to an elec-
tric potential [11].

When cultured osteocytes are subjected to fluid shear stresses,
they release several messengers, including prostaglandins and ni-
tric oxide [12]. According to results from in vivo studies [13], pros-
taglandins, e.g. prostaglandin E2 (PGE2), stimulate osteoblast
activity. In addition, nitric oxide is a strong inhibitor of bone
resorption through processes which decrease the recruitment of
osteoclasts [14].

It has been proposed that strain-adaptive modeling and remod-
eling is controlled by a tissue-level negative feedback system [15].
The strains in a bone moderate the biologic mechanisms that
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Fig. 1. Cross-section of (a) a mouse ulna [26] and (b) one-dimensional bone model.
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increase or decrease its strength. For low activity, e.g. bed rest or
being under low-gravity conditions, bone tissue resorbs and for in-
creased activity bone growth is stimulated. The most effective way
to strengthen a long bone is to add bone at the periosteal surface.
This will increase the second moment of area and the resistance to
bending or torsional loading. Moreover, it has been observed that
static loading does not cause bone modeling [2].

There have been some investigations in which bone was mod-
eled to be a homogeneous, porous medium (see for example,
[16]). In addition, there have been many studies in which fluid flow
within an osteon has been examined based upon the concentric
cylinder, Piekarski–Munro model [17] (see for example, [18–21]).
A unit cell of an osteon in an homogenized model of a porous bone
was employed by Wang et al. [22] to determine the distribution of
fluid pressure across a bone in bending. Petrov and Pollack [23]
considered the Piekarski–Munro model and found that both diffu-
sion caused by a concentration gradient and stress induced fluid
flow were ineffective as nutrient transport mechanisms. Knothe
Tate and Niederer [24] also found that diffusion caused by a con-
centration gradient was insufficient for nutrient transport. But they
found that convection was an efficient transport mechanism. In
this investigation, another model is proposed which treats these is-
sues differently. In fact, most of the studies related to the osteon
examined the problem of nutrient transport on the mesoscale
alone, whereas in this study a macroscale view is taken.

Clearly, modeling of bones is a three-dimensional process. In or-
der to understand the directional and transient process, a one-
dimensional model is proposed which may be extended to two
and three-dimensions. With the one-dimensional model, analytical
results are obtained and exploited to understand the factors which
play the greatest role in bone modeling at the periosteal surface. It
is proposed here that the modeling process is governed by changes
in the chemical environment of the osteoblasts. The study focuses
on transport of nutrients to the periosteal surface of the diaphysis
of long bones. The analysis may equally well be applied to trans-
port of messenger molecules. The porosity of the bone is accounted
for by using effective material properties. When sufficient nutri-
ents leak out at the periosteal surface, bone modeling is triggered.
The model, when extended to two dimensions, can allow examina-
tion of the endosteal surface, as well as the Haversian systems. This
is beyond the scope of the current investigation. In Section 2, the
one-dimensional transport model is presented. Results are ob-
tained for the concentration of bone nutrients within the bone as
a function of time. A transient term is found which contributes sig-
nificantly to the solution for physiological time scales. In addition,
the seepage of these nutrients at the periosteal surface of the cor-
tical bone is found as a function of time for different strain frequen-
cies. Experiments carried out by other researchers are discussed in
Section 3 and related to the results of the analytical model.

2. One-dimensional transport model for bone nutrients

In this section, a one-dimensional model is developed to study
the transport of bone nutrients in a cross-section of the bone. Bone
nutrients which are thought to cause the recruitment and/or differ-
entiation of osteoblasts are NOS and PGE2 [25]; these are consid-
ered in the analysis. Any other nutrients or ions, hormones,
enzymes, cytokines and growth factors may be added to the analy-
sis once the relevant parameters for these substances are known.

Consider a cross-section of a diaphysis of a mouse ulna in the yz-
plane as shown in Fig. 1(a) [26]. For the one-dimensional model, the
bone is treated as a long, solid, straight rod; its cross-section is
shown in Fig. 1(b). The x-axis which is perpendicular to the cross-
section is along the longitudinal direction of the bone and is not
shown in Fig. 1. The y-coordinate has values �a 6 y 6 a. In this
study, a is chosen to be the thickness of the cortical bone, the grey
region in Fig. 1(a). The medullary cavity is neglected. Generally, in
a long bone, compressive loading takes place along its longitudinal
axis (here the x-axis). As a result of its initial curvature, bending oc-
curs. To this end, oscillating, pure, symmetric bending along the lon-
gitudinal direction of the bone is imposed. Hence, all quantities are
functions of the coordinate y and time t, only. In this study, two
forces are assumed to drive the diffusion of the bone nutrients.
One is the change in the concentration c of the bone nutrients with
position which is the basis of Fick’s first law. The second is the
change with position of the hydrostatic stress rh within the bone.
For general solutes, Li [27] presented the governing equation for
the flux J as:

Jðy; tÞ ¼ �Dc0ðy; tÞ þ BVAcðy; tÞr0hðy; tÞ; ð1Þ

where D is the diffusion coefficient, B is the mechanical mobility, VA

is the atomic volume of bone nutrients, and the prime denotes dif-
ferentiation with respect to y. Eq. (1) is applied here to the flux of
bone nutrients in the bone. As a first order approximation, it is as-
sumed that c � c0 the initial concentration, so that:

Jðy; tÞ ¼ �Dc0ðy; tÞ þ BVAc0r0hðy; tÞ: ð2Þ

In Appendix A, this approximation is examined. The mechanical
mobility is given by B = D/kBT [28,29] where kB is Boltzmann’s con-
stant and T is the absolute temperature. The molar volume
V ¼ NAVA, where NA is Avogadro’s number. Hence, Eq. (2) may be
written as:

Jðy; tÞ ¼ �Dc0ðy; tÞ þ DVc0

RT
r0hðy; tÞ; ð3Þ

where the ideal gas constant R = NAkB.
The stress in a section of the bone is given by (Yang [30]):

rxx ¼ E�xx �
EV
3
ðc � c0Þ; ð4Þ

where E is Young’s modulus and �xx is the axial strain. It is assumed
that the bone is linear elastic, isotropic and homogeneous. It is well
known that bone is anisotropic and heterogeneous. On the macro-
scopic level, one can assume effective material properties which al-
lows the model to be homogeneous. Frequently, bone is assumed to
be transversely isotropic; with reference to Fig. 1, the y–z plane is
that of isotropy. Hence, the assumptions here for bending are rea-
sonable. Values of E taken from the literature for actual bones are
effective properties which include the porosity, as well as the fluid
within the bone. It is assumed that the beam is bent in a sinusoidal
manner with time. For beam bending, a kinematic assumption is
made that plane sections remain plane and rotate about the neutral
axis. Since y is a symmetry axis, the neutral axis is given by y = 0.
Moreover, the sign of the moment remains unchanged during
bending, so that it is possible to write:

�xx ¼
yj0

2
ðcos xt � 1Þ; ð5Þ
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where j0 is the amplitude of the beam curvature and x is the fre-
quency. It may be noted that at y = a (see Fig. 1), the bending strain
ranges from zero to compressive values, whereas at y = �a, the
bending strain is between zero and a tensile value. Substitution of
Eq. (5) into Eq. (4) and use of

rh ¼
1
3
rxx; ð6Þ

in Eq. (3) leads to:

Jðy; tÞ ¼ �D 1þ EV2c0

9RT

 !
c0ðy; tÞ þ DEVj0c0

6RT
ðcos xt � 1Þ: ð7Þ

Fick’s second law is given by

_cðy; tÞ ¼ �J0ðy; tÞ; ð8Þ

where the dot above a quantity represents differentiation with re-
spect to time. Differentiation of Eq. (7) with respect to y and substi-
tution into Eq. (8) leads to the governing partial differential
equation for the concentration, namely:

k _cðy; tÞ ¼ c00ðy; tÞ; ð9Þ

for �a < y < a, where:

k ¼ 1

D 1þ EV2c0
9RT

� � : ð10Þ

Since all variables are anti-symmetric with respect to y (see Eq.
(5)), the governing equation is solved for 0 < y < a. The boundary
condition for y = 0 is

cð0; tÞ ¼ c0; ð11Þ

where c0 is the initial concentration. The characteristic flux in the
body is assumed to be much larger than that which is consumed
by the periosteal processes. Therefore, the flux across the periosteal
boundary, here denoted as seepage, is assumed to be insignificant
and without effect on the dynamic distribution of the nutrients
within the bone. The seepage controls the state of the periosteum,
including chemistry, physical conditions, growth rate, etc. Hence,
to compute the nutrient distribution within the bone, it is assumed
that the flux vanishes (it is actually very small) at the ends jyj = a,
which by setting Eq. (7) to zero leads to:

ac0ða; tÞ ¼ Pc0ðcos xt � 1Þ; ð12Þ

where a normalized nutrient driving force is defined as:

P � DkEVj0a
6RT

: ð13Þ

The initial condition is chosen to be:

cðy;0Þ ¼ c0: ð14Þ

The governing equation, together with the boundary and initial
conditions are solved by means of the Laplace transform to obtain:
Table 1
Some typical measurements of bone cross-sections.

Animal/bone Diameter (mm) Thickness (mm) Reference

Mouse/ulna 0.6 0.2 Lee et al. [31]
Rat/tibia 2.3 0.6 Oxlund et al. [32]
Turkey/ulna 12 1.75 Lanyon and Rubin [2]
cðy; tÞ
c0

¼ 1þ P

(
2ðxkÞ2

a2

X1
n¼1

ð�1Þnþ1

b2
n b4

n þ ðxkÞ2
h i sinðbnyÞe�

b2
n
k t

þ 1
2ga

AðgyÞ sin xt þ BðgyÞ cos xt½ � � y
a

)
ð15Þ
for �a < y < a where

AðgyÞ ¼ RðgaÞ SðgaÞ sinh gy cos gy� TðgaÞ cosh gy sin gy½ �; ð16Þ
BðgyÞ ¼ RðgaÞ SðgaÞ cosh gy singyþ TðgaÞ sinh gy cos gy½ �; ð17Þ

RðgaÞ ¼ 2
cosh 2gaþ cos 2ga

; ð18Þ

SðgaÞ ¼ cosh ga cos gaþ sinh ga singa; ð19Þ
TðgaÞ ¼ cosh ga cos ga� sinh ga sin ga; ð20Þ

g ¼
ffiffiffiffiffiffiffi
xk
2

r
: ð21Þ

The parameter k is defined in Eq. (10), and bn is given in Eq. (46). The
solution method is presented in Appendix B.

To gain an understanding of the behavior of the bone nutrients
forming on the outer region of the bone which are required for
modeling there, consider the nominal flux Jn across a thin layer
at the boundary of the bone, e.g. the periosteum, given by

Jn ¼
1

k�h�
f cðtÞ � c0½ �jjyj¼a � Pc0ðcos xt � 1Þg: ð22Þ

This expression is obtained using Eqs. (7) and (13), assuming that
this layer is of thickness h⁄ with diffusion parameter D⁄ which con-
trol the release of bone nutrients at jyj = a. The parameter k⁄ is ob-
tained using Eq. (10) with D replaced by D⁄. In Eq. (22), the first
term is the concentration gradient given by (c � c0)/h⁄ and the sec-
ond term is the strain gradient �m/h⁄, where �m is the strain at
jyj = a. The seepage S⁄ is found by assuming that it scales linearly
with the concentration so that multiplying the nominal flux at the
boundary Jn by (c � c0)/c0, one obtains:

S� ¼ 1
k�h�c0

ð½cðtÞ � c0�Þ cðtÞ � c0½ � � Pc0ðcos xt � 1Þf gjjyj¼a: ð23Þ

A normalized seepage may be defined as:

eS ¼ k�h�

c0
S�: ð24Þ

In obtaining the results, a time averaged value of the normalized
seepage is calculated as:

bS ¼ 1
tf

Z tf

0

eSðtÞdt; ð25Þ

where tf is the time during which the bone is stimulated.

3. Results

In this section, three animals are considered: a mouse, a rat and
a turkey. In Table 1, approximate measurements of the thickness of
the cortical bone depicted in grey in Fig. 1 and the diameter of the
bones are presented. For the one-dimensional analyses, it is as-
sumed that the half-length of the cross-section a is the thickness
given in Table 1 for each animal.

The normalized concentration c(a, t)/c0 and the seepage eS are
presented as a function of time. In order to plot these quantities,
other physical parameters are required. The ideal gas constant
R = 8.3145 J/(K � mol). The diffusivity coefficient D for both PGE2

and NOS through the bone tissue is taken to be 6.21 � 10�10 m2/
s (see [33]). In that study dextrans were examined in bovine corti-



Fig. 2. Normalized concentration of bone nutrients for mouse ulnas at the outer
edges of the bone with frequency of f = 10, 20 and 30 Hz and applied maximum
peak compressive strain of 0.0017.
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cal bone. The value of D is taken from the cellular syncytium level.
The value of c0 is found to be approximately between 2.8 � 10�6

and 28.4 � 10�6 moles/m3 for rats [34]. The former value was used
for all animals. The volume of one mole of PGE2 is found as
3.07 � 10�4 m3 (http://www.chemspider.com/RecordView.aspx?
id=10256424). The normal temperature for each of the three ani-
mals studied here is given in Table 2. Young’s modulus for cortical
bone in different areas of the body tends to vary. Some values are
given in Table 2. These may be looked upon as approximations, but
their order of magnitude is correct. It may be seen that the
parameter:

EV2c0

9RT
; ð26Þ

which appears in Eq. (10) varies between O(10�7) and O(10�8) for
all properties appearing in this study; hence, k 	 1/D. Further, since
the governing differential equation was linearized, it may be ob-
served from Eq. (7) that the value of the normalized concentration
c/c0 is limited to small deviations from unity. In this study, the lim-
iting deviation was chosen to be ±0.4.

In a study of functional adaptation of the mouse ulna [31], two
different peak compressive strains of 2 � 10�3 and 3 � 10�3 were
applied to the ulna of a group of mice for 10 min with a 4 Hz trap-
ezoidal wave for 5 days/week for 2 weeks. The results showed
greater positive effects on the bone formation rate in the group
with the higher strain amplitude. Substituting the prescribed strain
quantities into Eq. (5) leads to maximum curvature values j0 of 10/
m and 15/m, respectively. It may be noted that the maximum
strain is equal to j0a. The normalized concentration in Eq. (15)
was plotted at y = ±a as a function of time t. It was observed that
the maximum value of the normalized concentration is too large
to allow for the linearization performed in Eq. (2). Hence, this for-
mulation may not be used for this case.

Next, consider the tests of Warden and Turner [26] on mice ulna
at frequencies of 1, 5, 10, 20 and 30 Hz. For one group, 120 cycles
per day were imposed on the ulna for three days with peak com-
pressive strains ranging from about 0.0017 and 0.0025. It may be
noted that the strain values varied somewhat for different frequen-
cies with the same applied load. Loading was applied by means of a
sine wave. The bone thickness was taken from Table 1 as a =
0.2 mm; whereas the temperature and Young’s modulus were
those in Table 2, namely T = 310.5 K and E = 23 GPa, respectively.
It may be noted that Young’s modulus in Table 2 is for mouse tibia.
For the strain � = �0.0017 and a frequency of 1 Hz and 5 Hz, load-
ing lasts for 120 s and 24 s, respectively, so that the concentration
is too large here to allow for linearization. Only for frequencies of
10, 20 and 30 Hz with the imposed strain and the time intervals
of 12, 6 and 4 s, respectively, can the model be employed. The con-
centration at y = ±a for each of these cases is shown in Fig. 2. It may
be observed that the frequency does not affect the general trend of
the concentration. At y = a (the compressive side of the bone), the
concentration is seen to decrease with increasing values of time. At
y = �a (the tensile side of the bone), the curves are reflected about
c = c0 so that they increase with time. It is seen at y = a and y = �a
that the concentration deceases/increases by a maximum of about
Table 2
Temperature and Young’s modulus of cortical bone of the animals studied.

Animal/bone T (K) E (GPa) Reference for E

Mouse/tibia 310.5a 23 Somerville et al. [35]
Rat/tibia 310.5b 8.5 Mattila et al. [36]
Turkey/ulna 314c 16.95 Ricos et al. [37]

a http://lvma.org/mouse.html.
b http://research.uiowa.edu/animal/?get=rat.
c Tabler [38].
22%, 27%, and 38%, respectively for frequencies of 10, 20 and 30 Hz.
For times greater than 12 s and these parameters, the linearized
model cannot be employed.

These curves are typical for all of the graphs plotted in this
study. It is interesting to examine the various terms in the expres-
sion for the concentration in Eq. (15). The first term represents
ambient conditions. The exponential term represents the transient
which at t = 0 balances with y/a. The former term is caused by the
imposed oscillating strain in Eq. (5). For physiological time scales,
this term makes a significant contribution to the concentration. As
time increases, the term y/a dominates. The oscillatory term
involving sinxt and cosxt causes the solution to oscillate about
other dominant terms as may be observed in Fig. 2.

For each of these frequencies, the normalized seepage eS in Eq.
(24) may be plotted. As an example, consider the graph in Fig. 3
for f = 10 Hz. In Fig. 3(a), the seepage at y = a is plotted; this is on
the side of the bone which is in compression. For y = �a, the side
of the bone which is in tension, as expected much higher values
of bone nutrient seepage are found. Nonetheless, even on the com-
pressive side of the bone, bone nutrients are released. If one looks
carefully at Fig. 3(a), it may be seen that each of the peaks is asso-
ciated with a curve for which there is area beneath it. The area un-
der the curves may be calculated to yield the total average seepage
given in Eq. (25). For each of the frequencies examined and at each
side of the bone, the results are presented in Table 3.

It was seen in Warden and Turner [26] that the larger load of
2 N is equivalent to a compressive strain of approximately
0.0025; this case could not be analyzed with the linearized model.
However, a load of 1 N was considered with � = �0.001. Calcula-
tions showed that the concentration and seepage were consider-
ably reduced as compared to that when � = �0.0017. Hence, it is
seen that seepage decreases with increasing frequency (see Table
3) and increases with increasing strain. Moreover, the seepage val-
ues are one to two orders of magnitude larger on the tensile side of
the bone than on the compressive side. It should be noted, how-
ever, that the number of cycles in each experiment was a constant
of 120; so that, for higher frequencies, the loading time was
shorter.

Rat tibiae were examined by Turner et al. [39]. Loading was
applied by means of a sine wave with a frequency of 2 Hz for
18 s per day. The applied compressive strain varied from about
0.0006 to 0.002. It was seen that at or below a compressive strain
of 0.00105, there was no increase in bone formation. To carry out
these analyses here, the value of the bone thickness a = 0.6 mm
was taken from Table 1. Young’s modulus was taken as E = 8.5
GPa and T = 310.5 K (see Table 2). The normalized concentration
in Eq. (15) is illustrated in Fig. 4 on the tensile side of the bone
(y = �a) for four strain values. As expected, as the absolute value
of the strain increases, the concentration diverges further from
its ambient value c0. Integrating the normalized seepage over the

http://www.chemspider.com/RecordView.aspx?id=10256424
http://www.chemspider.com/RecordView.aspx?id=10256424
http://lvma.org/mouse.html
http://research.uiowa.edu/animal/?get=rat


Fig. 3. Normalized seepage for mouse ulnas with frequency of f = 10 Hz and applied maximum peak compressive strain of 0.0017 at (a) y = a and (b) y = �a.

Table 3
Time averaged, normalized seepage in Eq. (25) for the mouse ulna at a given
frequency.

f (Hz) 10 20 30

bS y = a 0.013 0.005 0.003
y = �a 0.27 0.18 0.14

Table 4
Time averaged, normalized seepage in Eq. (25) for the rat tibia with a given
compressive strain for y = �a.

� 0.0006 0.001 0.0015 0.002

bSð�10�2Þ 0.16 0.44 1.00 1.78
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time period of 18 s as shown in Eq. (25) leads to the values pre-
sented in Table 4. It may be observed that the average seepage bS
increases with strain. Apparently, a seepage level below 0.44 �
10�2 is too low to induce bone formation.

Next, in the classical isolated avian turkey ulna model [2], 100
consecutive cycles of a 1 Hz square ramped wave were applied.
The strain rate during the ramp was 0.01 s�1. During the rest of
the day, the ulna was disused. The maximum compressive strain
during loading was �0.002 in the mid-shaft of the ulna. This can
be compared with the conditions during normal flapping which
have been measured as �max = �0.0033 and a maximum strain rate
of 0.056 s�1. One group of turkey ulnas was loaded statically with
the corresponding strain amplitude. Bones loaded dynamically
showed a 24% increase in cross-sectional area, while both the
group loaded statically and that unloaded showed a decrease of
13% in bone cross-sectional area. With the thickness of the bone ta-
ken as a = 1.75 mm (see Table 1), the normal temperature of the
Fig. 4. Normalized concentration when y = �a for rat tibias for a frequency of f = 2 Hz a
turkey T = 314 K and Young’s modulus E = 17 GPa (see Table 2),
the normalized concentration in Eq. (15) was calculated and is pre-
sented in Fig. 5 at y = �a. Similar behavior as compared to the other
cases is observed. For the largest compressive strain considered,
the increase in the normalized concentration is about 18% which
is within the range of the linearized model. According to Lanyon
and Rubin [2], a peak compressive strain of 0.002 is sufficient to in-
crease the bone cross-section. Thus, the seepage level determined
here should be sufficient. For a strain of �0.0033 achieved by nor-
mal flapping, the seepage level is approximately three times great-
er, implying that greater bone growth is expected.
4. Summary and conclusions

In this study, a one-dimensional model for strain driven trans-
port of bone nutrients was presented. The differential equation
was linearized which required the concentration not to differ too
nd applied maximum peak compressive strains of 0.0006, 0.001, 0.0015 and 0.002.



Fig. 5. Normalized concentration for turkey ulnas for a frequency of f = 1 Hz and applied maximum peak compressive strains of 0.002 and 0.0033 at y = �a.
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much from its ambient value. A transient term was found which
dominates the results for time scales described in many functional
adaptation tests on animals. Three animals were considered: a
mouse, a rat and a turkey. There have been quite a few experi-
ments on these animals in which their limbs were loaded. The
key quantities needed to evaluate the model include the frequency
of loading, the peak strain levels, and the number of cycles used. In
addition, various properties are required such as the diffusion coef-
ficient of bone nutrients, their molar volume, the ambient concen-
tration without applied load, Young’s modulus of the bone, as well
as its thickness, and the temperature of the animal. Indeed, it is
desirable to obtain more accurate values of the diffusion coeffi-
cient, the molar volume and the ambient concentration of the bone
nutrients. Tests continue to be carried out to determine the
mechanical properties of different bones. In addition, two other
parameters have been defined in this study which are D⁄ and h⁄,
a diffusion coefficient which governs seepage out of the bone and
the distance over which this takes place. Since these two constants
appear as a ratio, their ratio may be measured.

It was seen that the model predicts an increase in the diver-
gence of the concentration from its ambient level and the average
seepage of bone nutrients at the bone edge with an increase in
peak strain level and number of cycles imposed. These trends seem
logical. Moreover, the seepage at the tensile side of the bone was
found to be one to two orders of magnitude larger than those at
the compressive side. This would seem to imply that more bone
growth could be expected on the side of the bone which is in ten-
sion. In fact, Mosley and Lanyon [40] found this to be the case for
rat ulnas subjected to axial loads. For the mice tested by Warden
and Turner [26], in which the frequency was increased but the
number of cycles was held constant, the lowest frequency for
which the linearization of the model could be justified showed
the highest bone nutrient seepage level. This corroborates the find-
ings in the experiments in which higher bone modeling was ob-
served for a frequency of 10 Hz. The model could not be
employed for the experiments of Lee et al. [31] on mice. The num-
ber of cycles caused the concentration to diverge considerably
from its ambient value so that linearization was not justified. With
the rats experimented on by Turner et al. [39], the model showed
that the divergence of the bone nutrient concentration from its
ambient value increased with increasing strain level. The bone
nutrient seepage also increased. It was seen in the experiments
that for a compressive strain level less than or equal to 0.00105,
bone formation did not occur. Perhaps the model may be calibrated
by this information. Finally, the turkey ulna was investigated by
Lanyon and Rubin [2]. In that study, it was seen that static loading
caused bone loss. The transport model presented here does not
describe static loading. Perhaps a similar approach can be used
to understand this phenomenon. For the dynamic loading, the
seepage level increased with increasing strain. No results for bone
formation were presented for � = �0.0033 which was measured for
normal flapping. According to the model, increased bone formation
should occur for this strain level as compared to the testing strain
level. The simplified model presented here appears justified since it
qualitatively captures the trends found for many of the basic phe-
nomena observed in animal experimentation.

To analyze more general cases, the transport model may be ex-
tended into the nonlinear range. The differential equation in Eq. (9)
may be easily reformulated. A numerical solution is required. In
addition, finite element analyses in two and three dimensions
may be carried out to model these problems. However, the basic
behavior is elucidated by the one-dimensional model presented
here. In addition, the parameters necessary for performing more
complex analyses have been delineated.
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Appendix A. First order approximation

In this appendix, a motivation for the first order approximation
that was assumed for the concentration c(y,t) is given. Inserting
Eqs. (4) and (5) into Eq. (1) and using the Einstein relation for
the mechanical mobility, a relation between the flux and concen-
tration is found as:

Jðy; tÞ ¼ �Dc0ðy; tÞ þ DEVcðy; tÞ
3RT

j0

2
ðcos xt � 1Þ � Vc0ðy; tÞ

3

" #
: ð27Þ

Note that in the linearized version of Eq. (7), c(y,t) was replaced by
c0. By substituting y ¼ aŷ and c = c0 ĉ into Eq. (27), one obtains:

a
Dc0

Jðŷ; tÞ ¼ �ĉ0ðŷ; tÞ þ EVaĉðŷ; tÞ
3RT

j0

2
ðcos xt � 1Þ � Vc0ĉ0ðŷ; tÞ

3a

" #
ð28Þ

where the prime denotes differentiation with respect to ŷ. The fol-
lowing two dimensionless parameters are introduced:

d ¼ EVaj0

6RT
c ¼ EV2c0

9RT
; ð29Þ
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resulting in:

a
Dc0

Jðŷ; tÞ ¼ �ĉ0ðŷ; tÞ þ dĉðŷ; tÞðcos xt � 1Þ � cĉðŷ; tÞĉ0ðŷ; tÞ: ð30Þ

It may be noted that the parameters in Eq. (29) are related to the
normalized nutrient driving force in Eq. (13) by

P ¼ d
1þ c

: ð31Þ

Differentiating Eq. (30) with respect to ŷ and use of Eq. (8) leads to:

_̂c ¼ ĉ00 � dĉ0ðcos x̂t̂ � 1Þ þ cĉ02 þ cĉĉ00; ð32Þ

where the dot over a quantity denotes differentiation with respect
to t̂; t ¼ a2 t̂=D and x ¼ Dx̂=a2. Eq. (32) is a dimensionless partial
differential equation.

The maximum strain aj0 provides the only stimulus for trans-
port and it only enters via the parameter d. Thus, the concentration
ĉ may be expanded for small values of strain, i.e., small values of d,
as follows:

ĉðŷ; t̂Þ ¼ 1þ dĉ1ðŷ; t̂Þ þ d2ĉ2ðŷ; t̂Þ þ d3ĉ3ðŷ; t̂Þ þ Oðd4Þ: ð33Þ

Substituting Eq. (33) into Eq. (32) leads to:
_̂c1 � ð1þ cÞĉ001 ¼ 0; ð34Þ
_̂c2 � ð1þ cÞĉ02 ¼ �ĉ01ðcos x̂t̂ � 1Þ þ c ĉ1ĉ001 þ ĉ021

� �
; ð35Þ

_̂c3 � ð1þ cÞĉ003 ¼ �ĉ02ðcos x̂t̂ � 1Þ þ c ĉ2ĉ001 þ 2ĉ01ĉ02 þ ĉ1ĉ002
� �

: ð36Þ

It should be noted that the argument in Eqs. (34)–(36) is ðŷ; t̂Þ.
Boundary conditions at ŷ ¼ 0 are ĉ1ð0; t̂Þ ¼ ĉ2ð0; t̂Þ ¼ ĉ3ð0; t̂Þ ¼ 0
and setting J � 0 in Eq. (27) at ŷ ¼ 1 leads to the boundary
conditions:

ĉ01 ¼
cos x̂t̂ � 1

1þ c
; ð37Þ

ĉ02 ¼
ĉ1ðcos x̂t̂ � 1Þ � cĉ1ĉ01

1þ c
; ð38Þ

ĉ03 ¼
ĉ2ðcos x̂t̂ � 1Þ � c ĉ1ĉ02 þ ĉ2ĉ01

� �
1þ c

; ð39Þ

where the argument in Eqs. (37)–(39) is ð1; t̂Þ.
The partial differential equation in (34) is identical to that in Eq.

(9) with the boundary condition in Eq. (37) identical to that in Eq.
(12). When solved together with the boundary condition at ŷ ¼ 0
and the initial condition at t̂ ¼ 0, the first order approximation to
Eq. (32) is obtained. Eqs. (34)–(36) may be solved one by one using
the boundary conditions (37)–(39), together with the boundary
conditions at ŷ ¼ 0 and the initial condition at t̂ ¼ 0; in this way,
higher order terms for the concentration may be obtained.

Appendix B. Solution of the partial differential equation

The governing partial differential equation in Eq. (9), the bound-
ary conditions in Eqs. (11) and (12) and the initial condition in Eq.
(14) for the concentration of bone nutrients are solved by means of
the Laplace transform. The Laplace transform is defined as (see
Churchill [41]):

Cðy; sÞ ¼
Z 1

0
cðy; tÞe�stdt; ð40Þ

where s is the Laplace transform variable. The inverse transform is
given by

cðy; tÞ ¼ 1
2pi

Z cþi1

c�i1
Cðy; sÞestds; ð41Þ

where c is a real, positive constant, and i ¼
ffiffiffiffiffiffiffi
�1
p

. Taking the Laplace
transform of Eq. (9) leads to:
C 00ðy; sÞ � ksCðy; sÞ ¼ �kc0: ð42Þ

The initial condition in Eq. (14) has been used in the derivation of
the ordinary differential equation in Eq. (42). The transform of the
boundary condition in Eq. (11) is given by

Cð0; sÞ ¼ c0

s
; ð43Þ

whereas, the transform of the boundary condition in Eq. (12) is gi-
ven by

C 0ða; sÞ ¼ Pc0

a
s

s2 þx2 �
1
s

� �
: ð44Þ

The solution to Eq. (42) with application of the boundary conditions
leads to:

Cðy; sÞ ¼ c0

s
þ Pc0

a
s

s2 þx2 �
1
s

� � sinh
ffiffiffiffiffi
ks
p

y
� �

ffiffiffiffiffi
ks
p

cosh
ffiffiffiffiffi
ks
p

a
� � : ð45Þ

The inverse transform in Eq. (41) is applied to the solution in Eq.
(45). It may be shown that the

ffiffi
s
p

is a removable singularity. More-
over, the term in parentheses has simple poles at s = ±ix; for the
second term, there is a simple pole at s = 0. For both terms there
are simple poles at s ¼ �b2

n=k where:

bn ¼
ð2n� 1Þp

2a
; ð46Þ

and n = 1,2, . . .. It may be noted that the integral in Eq. (41) on the
part circular path far from the origin, goes to zero. Hence, the in-
verse transform may be evaluated by the residue theorem with
the result given in Eq. (15).
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